Step up a level in abstraction. From now on, we'll talk about programming at an algorithmic level, not at a Turing Machine level, but anything we talk about can be computed by a Turing Machine.

1 P

Suppose you have a problem of size N, for example sort a list of length N, multiply two matrices of size N by N, find the maximum of a list of N numbers, etc. The problem is said to be in the set P if there is an algorithm, that could be run on a Turing Machine, to compute a solution to the problem in polynomial time.

In other words, P is the set of all problems that can be computed by TMs in polynomial time.

1.1 Examples

- Sorting a list - clearly you could do that in $\leq N^2$ operations. Matrix multiplication - can be done in N^3 operations. List maximum - can be done in N operations.

2 NP

2.1 Boolean Satisfiability

Given a boolean expression E in N variables, $V_1, V_2, \ldots V_N$ in the Product of Sums form. Is there a set of inputs $V_1, V_2, \ldots V_N$ such that the expression evaluates to True?

- Can you think of a way to do this in polynomial time?
- Consider a related problem. Suppose someone gives you $V_1, V_2, \ldots V_N$ and asks “does this work?”
- Can you solve this in polynomial time?

2.2 Non-Deterministic Turing Machines

These are completely analogous to NDFSMs. In other words, there can be multiple possible transitions from one given state to a next state.

2.3 NP

Suppose you have a problem X. If you can make an algorithm of the following form, then $X \in NP$.

Algorithm:
1) Non-deterministically (i.e. using an NDTM) generate a possible solution for X.
2) Verify the solution (in polynomial time, using a DTM).
More formally, NP is the set of all languages that can be recognized by an NDTM.

Equivalently, NP is the set of all languages that have a polynomial verification algorithm.

2.3.1 Example: The Travelling Salesman Problem (TSP)

Given a set of N cities and distances between them, is there a circuit of length L that starts at one city, visits all the cities exactly once, and returns to the starting city?

$TSP \in NP$ — Given a path, it’s easy to check if its length is L.

2.3.2 Example: The Clique Problem

Given a graph with N vertices, is there a clique of size K? (I.e. is there a subgraph of K vertices which are all connected to each other?)

This problem is in NP — Given a set of K vertices, it’s easy to see if they’re all connected.

3 NP-completeness

Remark: $P \subseteq NP$

It is not known if $NP \subseteq P$.

There is a set of problems, known as NP-complete problems that have the property that if any one of them is in P, then all NP problems are in P.

Boolean Satisfiability is one such problem.

The Traveling Salesman Problem is another.

The Clique Problem is a third.

The key point about NP-complete problems is this: Let X be an NP-complete problem. Let Y be any problem in NP (not necessarily NP-complete). Then, you can reduce Y to X in polynomial time.